联系我们

联系人:黄勇(先生)

联系手机:13701633515

固定电话:31660605

企业邮箱:77956468@qq.com

联系我时,请说是在地方电气网上看到的,谢谢!

今日最新资讯
热门资讯
地方电气网资讯
    西门子O.25千瓦变频器6SL3211-OKB12-5UA1
    发布者:黄工  发布时间:2016-04-08 20:40:21  访问次数:37

    西门子O.25千瓦变频器6SL3211-OKB12-5UA1,西门子O.25千瓦变频器6SL3211-OKB12-5UA1

                               {心中有空间,梦想就有可能}

                     {西门子与客户携手,让关键所在,逐一实现}

    联   系   人: 黄勇《黄工》   24小时联系手机:  13701633515
    直线销售 电 话: 021-31660605    在 线 商 务 QQ:  77956468 
    单位:台                                                                                  产品单价:电议

    供货数量:不限                                                                      最小定量:1

    包装说明:齐全                                                                      产品规格:全新原装

    S7-300如何通过GSD文件实现PROFIBUS DP主从通讯

    1 GSD文件介绍
    GSD文件是一种设备描述文件,一般以“*.GSD”或“*.GSE”为后缀。它描述了设备的功能参数,用来将不同厂家支持PROFIBUS产品集成在一起。另外在工程开发中有时候由于开发人员不同,要用两个独立的STEP 7项目来实现同一个PROFIBUS 网络通讯,此时需要借助GSD文件的方法来实现。


    2 GSD文件的导入方法
    下面以CPU314C-2DP为例,说明一下 GSD 文件的导入步骤:
    首先从西门子网站上下载相关产品的 GSD 文件,下面是SIMATIC系列产品的GSD文件下载链接:113652
    选择相关产品并下载到本地硬盘中。


    图 1 GSD文件下载界面

    打开SIMATIC Manager,进入硬件组态界面,选择菜单栏的“Options”->“Install GSD File…”,如图 2 所示。


    图 2 安装GSD文件

    进入GSD安装界面后,选择“Browse…”,选择相关GSD文件的保存文件夹,选择对应的GSD文件(这里选择语言为英文的“*.GSE”文件),点击“Install”按钮进行安装。


    图 3 选择安装GSD文件

    安装完成后可以在下面的路径中找到CPU314C-2DP,如图 4:


    图 4 硬件目录中的保存路径


    3 CP342-5做主站采用GSD方法实现PROFIBUS DP 通信

    3.1网络拓扑介绍
    PROFIBUS DP主站由CPU314+CP342-5组成,其中CP342-5做主站。
    PROFIBUS DP 从站由CPU314C-2DP组成,集成的DP接口做从站。
    网络拓扑图如下:


    图 5 网络拓扑图

    3.2 从站组态
    首先插入SIMATIC S7-300站,添加CPU314-2DP,双击DP接口,分配一个PROFIBUS地址,然后在“Operating Mode”中选择“DP salve”模式,进入“Configuration”标签页,新建两行通信接口区,如图 6所示:


    图 6 从站通信接口区

    注意:上述从站组态的通信接口区和主站导入的GSD从站的通信接口区在顺序、长度和一致性上要保持一致。

    3.3 主站组态及编程

    3.3.1主站组态
    首先插入SIMATIC S7-300站,添加CPU314以及CP342-5,然后双击CP342-5,将“Operating Mode”设置为“DP Master”。新建一条PROFIBUS网络。然后从硬件目录中选择CPU314C-2DP GSD文件(路径参照图4),添加到新建的PROFIBUS网络中,为其分配PROFIBUS地址,该地址要与前文的从站地址一致。
    然后组态CPU314C-2DP从站对应的通信接口区。本文在硬件目录中CPU314C-2DP GSD文件下方选择了“Master_I Slave_Q 1B unit”和“Master_Q Slave_I 1B unit”,和从站组态时通信接口区保持一致,如图 7所示。


    图 7 主站组态

    3.3.2 主站编程
    由于CP342-5提供的是虚拟地址映射区,所以需要分别调用FC1(DP_SEND)和FC2(DP_RECV)来实现数据访问。如图8 和图9所示。


    图 8发送程序

     


    图 9接收程序

    如图7所示,主站侧在组态CPU314C-2DP GSD从站时,第一行通信接口区选择了“Master_I Slave_Q 1B unit”,“Master_I”对应主站的IB0。参照图6可知“Slave_Q”对应从站的QB0, 表示数据由从站的QB0发送到主站的IB0。又由于CP342-5通过调用FC2,将IB0读取的数据保存在MB11,所以数据由从站的QB0经过主站的IB0,最终保存在MB11。 同理可分析第二行通信接口区“Master_Q Slave_I 1B unit”。综上所述,主站和从站通信接口的对应关系,如表 1:

    主站 传输方向 从站
    MB11IB0      QB0
    MB10QB0      IB0

    表1 主站和从站通信接口区对应表


    4 S7-300做主站采用GSD方法实现PROFIBUS DP 通信

    4.1 网络拓扑介绍
    PROFIBUS DP主站由CPU314C-2DP组成,集成的DP接口做主站。
    PROFIBUS DP 从站由CPU314C-2DP组成,集成的DP接口做从站。
    网络拓扑图如下:


    图 10 网络拓扑图

    4.2 从站组态
    组态步骤同3.2节,这里不再赘述。

    4.3 主站组态
    首先新建S7-300站,添加CPU314C-2DP,双击DP接口,新建一条PROFIBUS网络。然后从硬件目录中选择CPU314C-2DP GSD文件(路径参照图4),添加到新建的PROFIBUS网络中,为其分配PROFIBUS地址,该地址要与前文的从站地址一致。
    然后为CPU314C-2DP从站组态的通信接口区。本文在硬件目录中CPU314C-2DP GSD文件下方选择了“Master_I Slave_Q 1B unit”和“Master_Q Slave_I 1B unit”,必须和从站组态时通信接口区保持一致。如图 11所示。


    图 11 主站组态

    主站和从站通信接口区的对应关系如表 2 所示:

    主站 传输方向 从站
    IB0         QB0
    QB0          IB0

    表 2 主站和从站通信接口区对应表

    注:文档涉及到西门子产品如下:

    表 3 产品列表

    产品名称 订货号 版本号
    STEP 7(英文版) 6ES7 810 - 4CC08 - 0YA5 V5.4 SP5
    CPU314C-2DP 6ES7 314 - 6CG03 - 0AB0 V2.6
    CPU314 6ES7 314 - 1AG13 - 0AB0 V2.6
    CP342-5 6GK7 342 - 5DA02 - 0XE0 V5.2
    PS307 6ES7 307 - 1EA00 - 0AA0  

    在终端模块 TM31 上提供有以下接口:

    • 8 路数字量输入
    • 4 路双向数字路输入/输出
    • 2 路带转换触点的继电器输出
    • 2 路模拟量输入
    • 2 路模拟量输出
    • 1 路温度传感器输入(KTY84-130 或 PTC)
    • 2 个 DRIVE-CLiQ 插座
    • 1 个电子装置电源接口,通过 24 V DC 电源连接器连接
    • 1 个 PE/保护导体连接

    TM31 端子模块可卡装在符合 EN 60715 (IEC 60715) TH 35 安装导轨上。

    信号电缆屏蔽可以借助一个屏蔽线接线端子连接在终端模块 TM31 上,例如 Phoenix Contact 型号的 SK8 ,或者Weidmüller 型号的KLBü1。屏蔽接线端子在失去弹性时不能再使用。

    端子模块 TM31 的状态通过一个多色 LED 来显示。

    该装置最重要的组件为:

    • 反并联连接的双碟型晶闸管
    • 触发电路根据版本可以在限定的电压下触发阻隔方向上的晶闸管。
    • 一个用于检测灭磁/放电电阻上的电压的模块,可以检测传导的电流,识别出何时过压保护装置触发,并使用二元输入发出状态信号。
    • 功率连接 C、D(铜母线)
    • 端子 XEW1 用于连接来自灭磁/放电电阻的传感器线。
    • 一个“可选快速灭磁”模块(选件 G11)。

    该模块通过控制三个相互独立的快速继电器使晶闸管可以在任何时候触发。

    反并联连接的两个晶闸管(位于连接 C 和 D 之间)可以短暂的(大约 5s)传导脉冲电流。过压会触发触发电路上的一个击穿二极管,而它会触发阻断晶闸管,并把触发电流经过阻断晶闸管通过一个反并联连接的二极管传输给它的闸门/阴极。击穿二极管与过压极性无关,总是利用桥式整流器以相同方向运行,而触发电流使用串联电阻限制在 6 到 8A 之间。晶闸管会在几毫秒之内触发,而电压会快速下降到正向电压(1 到 1.5V)。负载电流会在几秒钟之内提高碟型晶闸管的温度,而晶闸管和堆结构会吸收热能。这样一来,负载循环只能等到冷却时间过去之后才能重复(见技术规范)。

    快速灭磁选件(G11)连接到触发电路上的方式使晶闸管可以随时通过至少三个继电器中的一个触发 - 三个继电器是相互独立的。这假定了电压足够大。一般来说,它大概为触发电压的 5%。三个都可以使用 24V 直流、110 V 到 125 V 直流或 220 V 到 240 V 直流控制。

    用于灭磁/放电电阻的电压检测装置连接到外部灭磁/放电电阻上。当电压检测响应时,必须阻断供电变频器,或者控制电流降到 0。电压检测模块需要一个最小 100mA 的外部 24V 直流电源。

    灭磁/放电电阻是一个外部器件,不包括在 SICROWBAR DC 过压保护装置交付范围内。它的电阻值必须足够高,以便即使在最高负载电流下电压仍然能够保持在保护供电变频器或绕组的破坏性限制以内。最低的电阻值由转换器的供电电压和最高负载电流限定(确定保险规格)。在确定电阻值时还必须考虑所需的灭磁时间。


    西门子PLC网络读写指令向导使用指南

    PPI协议是专门为S7-200开发的通信协议。S7-200 CPU的通信口(Port 0、Port 1)均支持PPI通信协议。S7-200 CPU的PPI网络通信是建立在RS-485网络的硬件基础上,因此其连接属性和需要的网络硬件设备与其他RS-485网络一致。

    1  网络读写(NETR/NETW)指令介绍

    网络读写指令一般用于S7-200 CPU之间的PPI网络通信。PPI通信前要保证PPI网络上的所有站点都应当有各自不同的网络地址,否则通信不会正常进行。另外,网络读写指令进行编程和应用时要注意以下几点:
    1)    在程序中可以使用任意条网络读写指令,但是在同一时刻,最多只能有8条网络读写指令被激活;
    2)    每条网络读写指令可以从远程站点读取/写入最多16个字节的信息;
    3)    使用NETR/NETW指令向导可以编辑最多24条网络读写指令,其核心是使用顺序控制指令,这样在任一时刻只有一条NETR/NETW指令有效;
    4)    每个CPU的端口只能配置一个网络读写指令向导。

    2  网络读写指令向导组态

    2.1 硬件连接

           下面通过一个实例(两台S7-200 PLC之间的通信)来介绍如何使用网络读写指令向导。首先,两个S7-200之间的硬件连接需要一根标准DP电缆加两个DP总线插头。两台S7-200的RS485通信端口连接方式,可参考以下图片中的连接方式(如果PLC有两个通信端口,则任意端口都可进行配置,本例中两个PLC均以Port 0口做PPI通信使用),如图1所示。

     

    图1   两台PLC的网络连接

    2.2 NETR/NETW向导组态过程

    2.2.1设定通信站地址

           首先,用PC/PPI编程电缆将两台PLC的网络站地址分别设置为2和3,波特率都为9.6Kbps。这时,将编程电缆连接到任一个CPU带可编程插口的DP插头上,查找两台PLC的站地址,如图2所示。

      
    图2   设定两台CPU的网络地址

           在本例中,选定通信地址为3的PLC为网络主站,并对其进行向导配置。选定要做为通信主站的CPU地址,点击确认后即可进入该CPU的编程界面。另外,网络读写指令向导会自动将CPU设置成主站模式,不必另行编程设置,只需为主站编写通信程序,从站直接使用通信缓冲区中的数据,或将数据整理到通信区即可。

    2.2.2 向导配置步骤

           进入到编程画面后,点击工具菜单栏,找到指令向导选项,准备进入网络读/写功能的向导配置模式,如图3所示。 

     
    图3 进入指令向导编程界面

    打开指令向导界面,选择NETR/NETW指令功能,如图4所示。 

    • S7-1500 控制器产品系列中的入门级 CPU
    • 适用于对程序范围和处理速度具有中等要求的应用
    • 在具有集中式和分布式 I/O 的生产线上作为集中式控制器使用
    • PROFINET IO IRT 接口,带 2 端口交换机
    • PROFINET I/O 控制器,用于在 PROFINET 上运行分布式 I/O
    • 用于连接 CPU 作为 SIMATIC 或 非西门子 PROFINET I/O 控制器下的 PROFINET 设备的 PRIFINET 智能设备
    • 等时同步模式
    • 集成运动控制功能,可以控制速度控制轴和定位轴,支持外部编码器
    • 集成 Web 服务器,带有创建用户定义的 Web 站点的选项
    • 运行 CPU 所需的 SIMATIC 存储卡
    • CPU 1511-1 PN 是经济型入门级 CPU,用于不连续生产技术中对处理速度和响应速度要求不高的应用。 CPU 1511-1 PN/DP 可以用作 PROFINET IO 控制器,也可以用作分布式智能设备 (PROFINET 智能设备)。 集成式 PROFINET IO IRT 接口设计为 2-端口交换机以便在系统中设立总线型拓扑。 另外,CPU 通过易组态的块提供全面控制功能,以及通过标准化 PLC-open 块 提供连接至驱动器的能力。
    • The CPU 1511-1 PN 有:

      • 功能强大的处理器:
        该 CPU 的单条二进制命令的命令执行时间可低至 60 ns。
      • 大容量工作存储器:
        150KB,用于程序;1 MB,用于数据
      • 采用 SIMATIC 存储卡作为加装存储器;
        允许实现例如数据日志和归档等其它功能
      • 灵活的扩展功能:
        单层组态最多可支持 32 个模块(CPU + 31 个模块)
      • 显示器的功能为:
        • 显示概览信息,例如,集成接口的 IP 地址、站名称、高级别名称、位置名称等。
        • 诊断信息显示
        • 模块信息显示
        • 显示可由用户定义的徽标
        • 显示器设置显示
        • IP 地址设置
        • 日期和时间设置
        • 选择操作模式
        • 复位 CPU 至出厂设置
        • 禁用/启用显示屏
        • 启用保护级别
      • PROFINET IO IRT 接口用于通过 PROFINET 进行分布式 I/O 连接
      • 性能
        • 指令处理速度更快, 取决于 CPU 型号、语言扩展和新的数据类型
        • 由于背板总线速度显著提高,CPU 的响应时间缩短
        • 功能强大的网络连接:
          每个 CPU 均标配PROFINET IO IRT(2 端口交换机)标准接口。
      • 集成技术
        • 通过标准化的块 (PLCopen) 连接模拟驱动器和具有 PROFIdrive 功能的驱动器
        • 支持速度控制轴和定位轴以及外部编码器,各轴之间可实现位置精确的传动
        • 具有所有 CPU 变量的跟踪功能,用于实时诊断和偶发故障检测
        • 全面的控制功能,例如,通过便于组态的块可自动优化控制参数实现最优控制质量
      • 集成安全功能
        • 通过密码进行知识保护,防止未经授权读取和修改程序块
        • 通过复制保护,可绑定 SIMATIC 存储卡的程序块和序列号: 只有在将配置的存储卡插到 CPU 中时,该程序块才可运行。
        • 4-级 授权理念: 
          也可以对和 HMI设备之间进行的通信进行限制。
        • 操作保护: 
          该控制器可以识别工程组态数据的更改和未授权传输。
      • 设计与操作
        • 显示器,用于显示概览信息,
          例如:站名、高级别名称、位置名称等概览信息、诊断信息、模块信息和显示器设置。
        • 显示器上可能的操作: 
          设置 CPU 或者所连接以太网通信处理器的地址、设置日期和时间、选择 CPU 的操作模式、复位 CPU 至默认设置、禁用/启用显示器、激活保护等级。
      • 集成式系统诊断
        • 显示屏上、TIA Portal 中、人机界面设备上以及 Web 服务器上以普通文本形式一致显示系统诊断信息(甚至能显示来自变频器的消息),即使 CPU 处于停止模式也会进行更新。
        • 集成在 CPU 的固件中,无须进行特殊组态
      • SIMATIC 存储卡(运行 CPU 所需)
        • 用作插入式装载存储器,或用于更新固件。
        • 还可用于存储附加文档或 csv 文件(用于配方和归档)
        • 通过用户程序的系统函数创建数据块实现数据存储/读取
      • 数据记录(归档)和配方
        • csv 格式配方文件存储并归档在 SIMATIC 存储卡中;
          利用办公工具或 Web 浏览器可以方便地访问与设备相关的运行数据
        • 通过网页浏览器或 SD 读卡器,可方便地访问机器的组态数据(与控制器之间的双向数据交换)
      • 编程
        • 使用 STEP 7 Professional V12 或更高版本进行编程
        • 移植工具,用于 SIMATIC S7-300/S7-400 至 S7-1500 的移植操作,可以自动地完成大部分程序代码的转换工作。 记录不可转换的代码,并可以手动进行调整。
        • STEP 7 V11 项目可在兼容模式下继续和 STEP 7 V12 组合使用 。
        • S7-1200 程序可通过复制/粘贴手段转移至 S7-1500

    西门子再次进行人事调整 任命新CFO
    2013年9月23日,德国西门子股份公司再次进行人事调整,RalfThomas被任命为CFO(首席财务官),且从即日起生效。与此同时,KlausHelmrich被任命为西门子股份公司劳工董事,并将继续担任CTO(首席技术官)一职。[4] 
    推动西部经济建设 西门子扎根成都
    2013年9月26日,西门子公司决定将全球领先的工业自动化研发、生产基地落户成都,建立西门子在中国最大的数字化工厂。之所以选择在成都建厂,一方面是因为成都作为西部地区的核心重镇,一直以来是西门子的重要市场;另一方面,也基于对成都投资环境的高度认可,成都在政府支持、人才资源、物流交通、基础设施等方面所具备的优势也是吸引西门子扎根成都的重要原因。[5] 
    下财年将裁员1.5万人 德国占三分之一
    2013年9月30日,西门子宣布将在未来一年内裁员1.5万人,其中有三分之一来自德国。西门子发言人表示,该项裁员计划也是公司的60亿欧元(约合81亿美元)成本削减计划的一部分。[6] 
    西门子首开节能效益分享商业模式助龙钢节能改造
    2013年4月,西门子与陕西龙钢项目的最终合同签订。西门子通过节能效益分享商业模式,与龙钢以6年为期,每年从烧结风机节省的电费中按比例进行节能收益分成,用以偿还西门子的设备成本。6年期满,设备归龙钢所有,且西门子退出分成,烧结机产生的后续收益归龙钢所有。[7] 
    西门子与内蒙乌兰水泥、南方国际租赁有限公司签署战略合作协议
    2006年6月2日,西门子(中国)有限公司、内蒙乌兰水泥集团和南方国际租赁有限公司在北京举行签字仪式,就内蒙古乌兰水泥集团节能项目签订《乌兰水泥、西门子、南方租赁一体化节能项目框架合作协议书》、《南方租赁和西门子关于节能项目战略合作协议书》、《乌兰水泥与南方租赁关于节能项目的租赁合同》以及《南方租赁与上海西门子工业自动化工程有限公司买卖合同》等一系列战略协议书。该协议的签订对促进我国节能服务产业的发展具有重要意义。[8] 
    退出家电业
    2014年09月25日,德国西门子公司宣布,将以30亿欧元向博世集团出售其持有的合资企业——博世西门子家用电器集团(博西家电)50%的股份,该交易有望2015年上半年完成。届时,西门子将彻底退出家电领域,从而专注于工业、能源、医疗等核心业务。

来源:上海赞国
免责声明:地方电气网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:0571-87774297。
0571-87774297