西门子0.37千瓦变频器6SL32110AB137UB1,西门子0.37千瓦变频器6SL32110AB137UB1
{心中有空间,梦想就有可能}
德国制造: 现货 联 系 人: 黄勇《黄工》 24小时联系手机: 13701633515
全新原装: 参数
质量保证: 保修
价格优势: 特价
我公司大量现货供应,价格优势,品质保证,德国原装进口
CM 1241 通讯模块用于通过点对点连接进行的快速、高性能的串行数据交换。
可实现点到点连接,例如:
CM 1241 通讯模块具有与基本设备相同的设计特点。
该通讯模块配备下列各项:
下列标准协议可用于 CM 1241 通讯模块:
还可以下载更多的驱动程序。
使用 STEP 7 Basic,CM 1241 通讯模块的参数化变得非常简便:
下面是CPU模块信息的诊断缓冲区中的事件:
Event 1 of 120: Event ID 16# 2522
Area length error when reading
Q area, bit access, Access address: 240
FC number: 250
Module address: 314
Requested OB: Programming error OB (OB121)
Priority class: 1
Internal error, Incoming event
07:38:26.517 PM 08/19/2013
诊断信息指出读取Q区的位地址出错,错误地址240,要求调用编程错误组织块OB121。
从CPU 412-2的手册查到默认的过程映像地址为128字节,超出范围可改为PQ地址,但是PQ区不能使用位地址,需要改为字节、字或双字地址。可在CPU属性对话框的“周期/时钟存储器”选项卡设置I/Q区的范围(见下图)。
1、定时器功能介绍
2、脚本中定时器介绍
3、使用脚本实现更多定时器功能
3.1 整点归档
3.2 WinCC 项目激活时避免脚本初次执行及延迟执行脚本1 定时器功能介绍
WinCC 中定时器的使用可以使 WinCC按照指定的周期或者时间点去执行任务,比如周期执行变量归档、在指定的时间点执行全局脚本或条件满足时打印报表。WinCC 已经提供了一些简单的定时器,可以满足大部分定时功能。但是在有些情况下,WinCC 提供的定时器不能满足我们需求,这时我们就可以通过 WinCC 提供的脚本接口通过编程的方式实现定时的功能,因为脚本本身既可以直接 调用 WinCC其他功能,比如报表打印,也可以通过中间变量来控制其他功能的执行,比如通过置位/复位归档控制变量来触发变量记录的执行。WinCC 提供了 C 脚本和 VBS 脚 本,本文主要以全局 C 脚本编程为例介绍定时功能的实现。
2 脚本中定时器介绍 既然在全局脚本中可以编程控制其他功能的执行,那么首先看看全局脚本的触发:
允许在运行时超过装置额定铭牌上指定的额定直流(最大允许连续直流电流)。但是超过的程度和持续时间要受到特定的限制,这在下面进行详细说明。
过载电流的绝对上限是 1.8 倍的额定直流电流。最高过载持续时间取决于过载电流的时间特性,以及该装置的过载历史,还取决于具体的设备情况。
每次过载都必定跟随有欠载(过载相的负载电流小于额定直流电流)。一旦达到最高允许过载持续时间,负载电流必须返回到至少绝对值 ≤ 额定直流电流。
通过对电源部分进行热监视可以确定动态过载持续时间(I2t 监视)。I2t 监视使用实际负载电流的时间特性计算环境温度以上晶闸管损耗层温度上升的替代值的时间特性。在这种情况下,要把具体的设备特性(例如热阻和时间常数)加入到计算中。当转换器打开时,计算过程从初始值开始,该初始值在关断/线路供电故障之前确定。在设置参数时必须把环境条件(环境温度和安装高度)考虑进来。
计算获得的替代消耗层温度上升超过允许值时,I2t监视会发出响应。作为响应,有两种选择可以被参数化:
可以禁用 I2t 监视功能。在这种情况下,电枢电流最高限制为额定直流电流。
动态过载能力的组态
组态单包含以下信息:
备注:如果计算获得的替代损耗层温度上升不超过最高允许值的 5%,则认为电源部分处于“低温”状态。该状态可以使用二进制可分配输出查询。
带过载间歇运行时具有极限特性的磁场结构
具有极限特性的磁场是指具有总持续时间 300s 的间歇过载运行的负载循环。这种负载循环包括两个时间部分——基本负载持续时间(电枢电流实际值 ≤ 额定直流电流)和过载持续时间(电枢电流实际值 ≥ 额定直流电流)。
每个极限特性会把一个特定装置的最大基本负载电流表示成针对最小负载持续时间(极限基本负载电流)的过载系数(极限基本负载电流,按额定直流电流的 a% 计算)。对于负载循环的剩余持续时间,最大允许过载电流通过过载系数确定。如果对于所需的过载系数没有指定极限特性,则要遵守针对下一个最高过载系数的极限特性。
极限特性的励磁对于 300s 负载循环有效。使用基本计算算法,负载循环可以长于或短于 300s 的负载循环持续时间组态。现在使用两个基本任务显示。
1 GSD文件介绍
GSD文件是一种设备描述文件,一般以“*.GSD”或“*.GSE”为后缀。它描述了设备的功能参数,用来将不同厂家支持PROFIBUS产品集成在一起。另外在工程开发中有时候由于开发人员不同,要用两个独立的STEP 7项目来实现同一个PROFIBUS 网络通讯,此时需要借助GSD文件的方法来实现。
2 GSD文件的导入方法
下面以CPU314C-2DP为例,说明一下 GSD 文件的导入步骤:
首先从西门子网站上下载相关产品的 GSD 文件,下面是SIMATIC系列产品的GSD文件下载链接:113652
选择相关产品并下载到本地硬盘中。
图 1 GSD文件下载界面
打开SIMATIC Manager,进入硬件组态界面,选择菜单栏的“Options”->“Install GSD File…”,如图 2 所示。
图 2 安装GSD文件
进入GSD安装界面后,选择“Browse…”,选择相关GSD文件的保存文件夹,选择对应的GSD文件(这里选择语言为英文的“*.GSE”文件),点击“Install”按钮进行安装。
图 3 选择安装GSD文件
安装完成后可以在下面的路径中找到CPU314C-2DP,如图 4:
图 4 硬件目录中的保存路径
3 CP342-5做主站采用GSD方法实现PROFIBUS DP 通信
3.1网络拓扑介绍
PROFIBUS DP主站由CPU314+CP342-5组成,其中CP342-5做主站。
PROFIBUS DP 从站由CPU314C-2DP组成,集成的DP接口做从站。
网络拓扑图如下:
图 5 网络拓扑图
3.2 从站组态
首先插入SIMATIC S7-300站,添加CPU314-2DP,双击DP接口,分配一个PROFIBUS地址,然后在“Operating Mode”中选择“DP salve”模式,进入“Configuration”标签页,新建两行通信接口区,如图 6所示:
图 6 从站通信接口区
注意:上述从站组态的通信接口区和主站导入的GSD从站的通信接口区在顺序、长度和一致性上要保持一致。
3.3 主站组态及编程
3.3.1主站组态
首先插入SIMATIC S7-300站,添加CPU314以及CP342-5,然后双击CP342-5,将“Operating Mode”设置为“DP Master”。新建一条PROFIBUS网络。然后从硬件目录中选择CPU314C-2DP GSD文件(路径参照图4),添加到新建的PROFIBUS网络中,为其分配PROFIBUS地址,该地址要与前文的从站地址一致。
然后组态CPU314C-2DP从站对应的通信接口区。本文在硬件目录中CPU314C-2DP GSD文件下方选择了“Master_I Slave_Q 1B unit”和“Master_Q Slave_I 1B unit”,和从站组态时通信接口区保持一致,如图 7所示。
图 7 主站组态
3.3.2 主站编程
由于CP342-5提供的是虚拟地址映射区,所以需要分别调用FC1(DP_SEND)和FC2(DP_RECV)来实现数据访问。如图8 和图9所示。
图 8发送程序
图 9接收程序
如图7所示,主站侧在组态CPU314C-2DP GSD从站时,第一行通信接口区选择了“Master_I Slave_Q 1B unit”,“Master_I”对应主站的IB0。参照图6可知“Slave_Q”对应从站的QB0, 表示数据由从站的QB0发送到主站的IB0。又由于CP342-5通过调用FC2,将IB0读取的数据保存在MB11,所以数据由从站的QB0经过主站的IB0,最终保存在MB11。 同理可分析第二行通信接口区“Master_Q Slave_I 1B unit”。综上所述,主站和从站通信接口的对应关系,如表 1:
主站 | 传输方向 | 从站 |
MB11(IB0) | ![]() | QB0 |
MB10(QB0) | ![]() | IB0 |
表1 主站和从站通信接口区对应表
4 S7-300做主站采用GSD方法实现PROFIBUS DP 通信
4.1 网络拓扑介绍
PROFIBUS DP主站由CPU314C-2DP组成,集成的DP接口做主站。
PROFIBUS DP 从站由CPU314C-2DP组成,集成的DP接口做从站。
网络拓扑图如下:
图 10 网络拓扑图
4.2 从站组态
组态步骤同3.2节,这里不再赘述。
4.3 主站组态
首先新建S7-300站,添加CPU314C-2DP,双击DP接口,新建一条PROFIBUS网络。然后从硬件目录中选择CPU314C-2DP GSD文件(路径参照图4),添加到新建的PROFIBUS网络中,为其分配PROFIBUS地址,该地址要与前文的从站地址一致。
然后为CPU314C-2DP从站组态的通信接口区。本文在硬件目录中CPU314C-2DP GSD文件下方选择了“Master_I Slave_Q 1B unit”和“Master_Q Slave_I 1B unit”,必须和从站组态时通信接口区保持一致。如图 11所示。
图 11 主站组态
主站和从站通信接口区的对应关系如表 2 所示:
主站 | 传输方向 | 从站 |
IB0 | ![]() | QB0 |
QB0 | ![]() | IB0 |
表 2 主站和从站通信接口区对应表
注:文档涉及到西门子产品如下:
表 3 产品列表
产品名称 | 订货号 | 版本号 |
STEP 7(英文版) | 6ES7 810 - 4CC08 - 0YA5 | V5.4 SP5 |
CPU314C-2DP | 6ES7 314 - 6CG03 - 0AB0 | V2.6 |
CPU314 | 6ES7 314 - 1AG13 - 0AB0 | V2.6 |
CP342-5 | 6GK7 342 - 5DA02 - 0XE0 | V5.2 |
PS307 | 6ES7 307 - 1EA00 - 0AA0 |