详细介绍:
M.SUN美阳蓄电池6-GFM-55/12V55AH型号/尺寸
M.SUN美阳蓄电池6-GFM-55/12V55AH型号/尺寸
M.SUN美阳蓄电池6-GFM-55/12V55AH型号/尺寸
失水的电池相当于电解液的硫酸浓度上升,也形成了加速电池硫化的条件。
较快速的充电可以抑制电池的硫化,基站的充电电流相对都比较小,所以硫化程度比充电电流大的电池严重。另外,浮充电压波动越小,浮充电流的扰动越小,也形成了电池硫化的条件。
采用低锑合金的正极板的电池,浮充电压比较低,也比其它铅钙锡铝合金电池更加轻易出现硫化。
从上面的硫化失效原因看看,很多电池是无法避免的。特别是电池组发生单体电池落后的时候,个别落后的单体电池处于欠充电状态,这样该电池比其它电池更加轻易硫化。
电池一旦出现硫化,靠单纯的浮充和均充是无法解决的,必须采取其它措施。目前我公司的技术主要就是消除电池的硫化,使之恢复原有标称容量,重新投进使用。
4、电池的失水
M • SUN美阳电池通信、电力、UPS系列是您的最佳选择
通信、电力、UPS系列电池的优点:
• 电池功率密度出众
• 电池放电能力超强
• 优化配置选择范围最广
• 用于大型UPS安装的超大型电池模块,每个电池功率可达1000瓦
• 可以选择长短不同的后备时间,以满足安装设计的需要
• 优化配置选择范围广,高效节省投入成本
• 低安培率时,能够长时间放电
• 充电时间短
• 前端子系列电池,可有效解决放置空间不足的难题
• 胶体系列电池,设计寿命长达15年
应用领域:
UPS系统
电力系统
通信系统
广播电视系统
应急照明系统
消防安全报警系统
无线通讯设备
铁路、航运、交通
产品特性:
1. 免维护
独特的气体再化合技术,不必定 期补液维护,减少用户使用后顾之忧。
2. 安全可靠性高
自动开启、关闭的安全阀,防止外部气体 被吸入蓄电池内部而破坏蓄电池性能,同时可防止因充电等产生的气体造成内压
异常 使蓄电池遭到破坏。 全密闭电池在 正常浮充下不会有电解液及酸雾排出,对人体无害。
3. 自放电率低
采用优质的铅钙多元合金,降低了蓄电池的自放电率,在20℃的环境温度下M•SUN电池6个月内不必补充电能即可使用。
4. 适应环境能力强
可在-20℃-+50℃的环境温度下使用,适用于沙漠、高原性气候,可用于防爆区的特殊电源。
5. 方向性强
特别隔膜(AGM)牢固吸附电解液使之不流动,电池无论立放或卧放均不会泄漏,保证了正常使用。
6. 绿色无污染
M•SUN电池不需要用耐酸防腐措施,可与电子仪器设备同置一室。
. 该系列产品是专为太阳能、风能发电等储能系统以及小电流浅循环应用领域设计的中小型阀控密封式铅酸蓄电池
2. 容量范围(C10):24Ah—200Ah(25℃)
3. 电压等级:12V
4. 循环寿命长:20%DOD循环寿命达2000次以上;
5. 良好的过放电恢复能力
6. 自放电率极小,平均每月≤2%(25℃)
7. 设计寿命:20Ah以上10年、20Ah及以下5年(25℃)
8. 工作温度范围宽:-30℃到50℃
产品参数:
型号
Type
|
额定电压
Namimal
Voltage
(V)
|
额定容量 Rated Capacity(Ah)
|
外形尺寸 Dimensions(mm)
|
参考重量
Weight Approx
(kg)
|
20HR
1.75V/C
|
10HR
1.75V/C
|
5HR
1.75V/C
|
1HR
1.75V/C
|
长
(L)
+1
|
宽
(W)
+1
|
高
(H)
+1
|
总
高
+2
|
6-FM-7
|
12
|
7.0
|
6.5
|
5.6
|
4.2
|
151
|
67
|
94
|
99
|
2.3
|
6-FM-7.5
|
12
|
7.5
|
6.9
|
6.0
|
4.5
|
151
|
67
|
94
|
99
|
2.5
|
6-FM-12
|
12
|
12.0
|
11.2
|
9.6
|
7.2
|
151
|
98
|
94
|
99
|
4.1
|
6-FM-14
|
12
|
14.0
|
13.0
|
11.2
|
8.4
|
151
|
98
|
94
|
99
|
4.4
|
6-FM-15
|
12
|
15.0
|
13.9
|
12.0
|
9.0
|
181
|
77
|
167
|
167
|
5.8
|
6-FM-17
|
12
|
17.0
|
15.8
|
13.6
|
10.2
|
181
|
77
|
167
|
167
|
6.2
|
6-FM-18
|
12
|
18.0
|
16.7
|
14.4
|
10.8
|
181
|
77
|
167
|
167
|
6.2
|
6-FM-20
|
12
|
20.0
|
18.6
|
16.0
|
12.0
|
180
|
77
|
167
|
167
|
6.4
|
6-FM-22
|
12
|
22.0
|
20.5
|
17.6
|
13.2
|
180
|
77
|
167
|
167
|
6.6
|
6-FM-24
|
12
|
24.0
|
22.3
|
19.2
|
14.4
|
166
|
126
|
174
|
178
|
8.5
|
6-FM-28
|
12
|
28.0
|
26.0
|
22.4
|
16.8
|
166
|
126
|
174
|
178
|
9.5
|
6-GFM-33
|
12
|
33.0
|
30.5
|
26.4
|
19.8
|
196
|
131
|
163
|
180
|
10.3
|
6-GFM-38
|
12
|
38.0
|
34.2
|
30.4
|
22.8
|
197
|
167
|
176
|
176
|
12.6
|
6-GFM-40
|
12
|
40
|
36
|
32
|
24
|
197
|
167
|
176
|
176
|
13.8
|
6-GFM-50
|
12
|
50
|
46
|
40
|
30
|
230
|
138
|
205
|
212
|
16.2
|
6-GFM-65
|
12
|
65
|
61
|
52
|
39
|
330
|
174
|
166
|
173
|
21.0
|
6-GFM-75
|
12
|
75
|
68
|
60
|
45
|
260
|
168
|
215
|
220
|
22.5
|
6-GFM-80A
|
12
|
80
|
72
|
64
|
48
|
260
|
168
|
215
|
220
|
23.5
|
6-GFM-80B
|
12
|
80
|
72
|
64
|
48
|
330
|
174
|
216
|
223
|
24.0
|
6-GFM-90
|
12
|
90
|
83
|
72
|
54
|
330
|
174
|
216
|
223
|
25.0
|
6-GFM-100A
|
12
|
100
|
92
|
80
|
60
|
330
|
174
|
216
|
223
|
26.0
|
6-GFM-100B
|
12
|
100
|
92
|
80
|
60
|
406
|
173
|
210
|
239
|
28
|
6-GFM-120
|
12
|
120
|
110
|
96
|
72
|
406
|
173
|
210
|
239
|
31
|
6-GFM-150
|
12
|
150
|
138
|
120
|
90
|
486
|
170
|
242
|
242
|
45
|
6-GFM-200
|
12
|
200
|
184
|
160
|
120
|
523
|
238
|
219
|
225
|
57
|
主要工艺内容:
1. 电池用正、负板栅合金工艺、配方研制
板栅合金和铅膏配方的创新设计,板栅采用铅钙高锡合金,同时加入了微量稀土元素,使其结晶更加微密、耐腐,适合深循环使用。正板铅膏中加入了多种添加剂和4PbOPbSO4,改变了颗粒结晶的形状形貌及颗粒之间的结合力,使铅膏更具有强度,更长寿命,同时降低了电池的反应内阻,提高了低温放电性能,改善了过放电后的恢复功能和深放电后的再充电性能。
2. 电池成流反应的活性物质配方,和制工艺方法,固化、干燥工艺方法研制
3. 电池组装松紧度对性能的影响实验
4. 各种充电工艺对性能的影响实验
5. 不同使用温度、不同放电制度
6. 各种充电制度、充电环境的影响
同时对胶体技术的研究也做了大量的工作,认真学习了德国阳光的胶体技术,围绕如何将电解液固定在胶质中形成均一稳定的果冻状态,如何提高气体的复合率、最大限度减少气体产生,如何提高电池充电接受能力、缩短再充电时间,如何降低自放电率,如何可深度放电、提高电池循环寿命次数,课题组做了大量实验并做了认真总结。
我公司还做了大量的调研工作,了解目前在市场上使用的电池存在的问题,进行分析,找出问题的原因,提出解决方法,历时八年时间,量子全胶体电池取得成功,受到了用户的广泛好评
电池充电达到单体电池2.35V(25℃)以后,就会进进正极板大量析氧状态,对于密封电池来说,负极板具备了氧复合能力。假如充电电流比较大,负极板的氧复合反应跟不上析氧的速度,气体会顶开排气阀而形成失水。假如充电电压达到2.42V(25℃),电池的负极板会析氢,而氢气不能够类似氧循环那样被正极板吸收,只能够增加电池气室的气压,最后会被排出气室而形成失水。电池具备负的温度特性,其析气也与温度特性一致。当电池温升以后,电池的析气电压也会下降,温升会导致电池轻易析气失水。长三角和珠三角地区夏季环境温度比较高,假如没有空调或者空调容量不足,会使电池失水增加。假如单体电池的浮充电压折合为2.25V,在30℃的时候,电池失水比25℃条件下增加一倍,在40℃条件下,电池失水是25℃的8倍左右,除非相应的降低浮充电压。
假如电池的正极板含锑,随着锑的循环,部分的转移到负极板上面。由于氢离子在锑还原的超电势约低200mV,于是负极板锑的积累会导致电池的充电电压降低,充电的大部分电流用来做水分解而形成失水。所以,在大型固定型电池中应该逐步淘汰低锑正极板的电池。另外,对在电池生产过程中,应该严格控制铅钙锡铝正极板的含量。
5、电池的热失控
电池在均充状态时,充电电压会达到折合单格2.4V,这个电压超过了电池正极板大量析氧的电压,特别是在高温环境中,大量析氧电压会下降,这样产生的析氧量会大幅度的增加。而正极板产生的氧气在负极板会被吸收,吸收氧气是明显的放热反应,电池的温度会提升。假如电池已经出现失水,玻璃纤维隔板的无酸孔隙增加,会加速负极板吸收氧气,产生的热量会更多,电池温升也更高。而电池的温升也会加速正极板析氧,形成恶性循环——热失控。在热失控状态下,析氧量增加,电池内的气压增加,当达到塑料电池外壳的玻璃点温度的时候,电池开始鼓胀变型,这种变型除了影响电池内部的机械结构以外,还会形成电池漏气,而导致更加严重的失水漏酸。
尽管电池热失控现象发生的未几,但是一旦发生热失控,电池的寿命会迅速提前结束。
6、电池的不均衡
新电池的容量、开路电压和内阻应该进行严格的配组。所以新电池一般离散性比较小。随着电池使用,电池在制造工艺中必然存在的微小差距会被扩大。
M.SUN美阳蓄电池6-GFM-55/12V55AH型号/尺寸
M.SUN美阳蓄电池6-GFM-55/12V55AH型号/尺寸
M.SUN美阳蓄电池6-GFM-55/12V55AH型号/尺寸
M.SUN美阳蓄电池6-GFM-55/12V55AH型号/尺寸
|