详细介绍:
UPS蓄电池指定代理商
SOTA蓄电池极板的构造:
根据蓄电池容量选择适当规格极板及数量组合而成。于充放电时,两极活性物质随着体积的变化而反复膨胀与收缩。两极活性物质中,阴极板之海绵状铅的结合力较强,而阳极板之过氧化铅的结合力弱,因而在充放电之际,会徐徐脱落,此即为铅蓄电池寿命受到限制的原因。期使蓄电池使用期限延长,能耐震并耐冲击,则阳极板的改良即成当急要务。玻璃纤维管式的阳极板: 此乃以玻璃纤维制的软管接在铅合金制的栉状格子(蕊金)上,在软管和蕊金间充填铅粉之后,将软管密封,使其发生变化,产生活性化物质,由于活性化物质不会脱落,与电解液接触亦良好,是一种非常好的极板材料。使用具有这种极板的蓄电池是电动车***的选择。编织式软管乃以9microm(μ)的玻璃纤维编成管袋状,弹性好,可耐膨胀或收缩,而且对电解液的渗透度也非常良好,此软管乃是***产品,长久以来,实用绩效良好。
SOTA蓄电池的维护使用:
在供电质量高、很少发生停电的使用环境中,蓄电池会长期处于浮充电状态,时间长了就会造成电池化学能与电能相互转化的活性降低,加速老化而缩短使用寿命。因此,一般每隔2~3个月应完全放电一次,放电时间可根据蓄电池的容量和负载大小确定。一次全负荷放电完毕后,按规定再充电8小时以上。利用通讯功能。目前,绝大多数大、中型UPS都具备与微机通讯和程序控制等可操作功能。在微机上安装相应的软件,通过串/并口连接UPS,运行该程序,就可以利用微机与UPS进行通讯。一般具有信息查询、参数设置、定时设定、自动关机和报警等功能。通过信息查询,可以获取市电输入电压、UPS输出电压、负载利用率、电池容量利用率、机内温度和市电频率等信息;通过参数设置,可以设定UPS基本特性、电池可维持时间和电池耗尽告警等。通过这些智能化的操作,大大方便了UPS及其蓄电池的使用管理
SOTA蓄电池性能的优越性:
***灰色外壳,体积小,重量轻,能量密度高,输出功率大
精密技术生产,使用寿命长,自放电率极低(小于3%每月)
特殊配方的铅钙合金及电解液,品质稳定,不污染环境
超音波密封外壳,免维护,免加水,使用可靠性高
内阻极小,回充容易,大电流放电性能优越
全自动流水线制造,一致性好,可任意成组使用
高压缩玻璃棉吸液式(AGM)技术
内藏防爆装置,采用超声波焊接技术加强蓄电池的密闭性
高级铅-锡-钙-银正极合金,有极强大电流放电后回充性及抗侵蚀能力
内藏式接电端子,连接牢固不易受损
置放时不受方向、位置之限制,环境温度广泛
适用在高功率的精密机械及高性能的UPS不断电系统
SOTA蓄电池性能特点:
极小的自放电电流:采用优质高纯度材料设计,自放电电流极小,自放电所造成的容量损失每月小于4%,减轻客户电池存储时的维护工作。极宽的工作温度范围:电池可以在-20℃~+50℃甚至更宽范围的温度条件下工作,电池的内阻比常规电池小的多,在-20℃~+50℃的温度范围内进行大电流放电,其输出功率比同规格的传统式开口电池高。良好的批量一致性:领先的设计技术和100%气密性、电压、容量和安全性能检验,保证了大批量生产的电池具有良好的一致性,特别适合于需要多节电池串联使用的场合,例如UPS电源后备电池组、逆变器后备电池组等。合理的安装和结构设计;国际化的极柱设计和紧凑的整体结构设计,方便安装和拆卸,易于维护,大大节省用户成本。免维护的专业设计:采用高可靠的专业阀控密封式设计,有效确保电池不漏(渗)液、无酸雾、不腐蚀,并在充电时产生的气体基本被吸收还原成电解液,在使用时无需加水、补液和测量电解液比重。
性能特点:
◆以气相二氧化硅和多种添加剂制成的硅凝胶,其结构为三维多孔网状结构,
吸附在凝胶中,同时凝胶中的毛细裂缝为正极析出的氧到达负极建立起通道,从而实现密封反应效率的建立,使电池全密封、无电解液的溢出和酸雾的析出,对环境和设备无污染。
◆胶体电池电解质呈凝胶状态,不流动、无泄露,可立式或卧式摆放。
◆板栅结构:极耳中位及底角错位式设计,2V系列正极板底部包有塑料保护膜,可提高蓄电池在工作中的可靠性,合金采用铅钙锡铝合金,负极板析氢电位高。正板合金为高锡低钙合金,其组织结构晶粒细小致密,耐腐蚀
◆隔板采用进口的胶体电池专用波纹式PVC隔板,其隔板孔率大,电阻低。性能好,电池具有长使用寿命的特点。
UPS蓄电池指定代理商
SOTA蓄电池温度与容量
当蓄电池温度降低,则其容量亦会因以下理由而显著减少。
(A)电解液不易扩散,两极活性物质的化学反应速率变慢。
(B)电解液之阻抗增加,电瓶电压下降,蓄电池的5HR容量会随蓄电池温度下降而减少。
因此:
(1)冬季比夏季的使用时间短。
(2)特别是使用于冷冻库的蓄电池由于放电量大,而使一天的实际使用时间显著减短。
若欲延长使用时间,则在冬季或是进入冷冻库前,应先提高其温度。
放电量与比重
蓄电池之电解液比重几乎与放电量成比例。因此,根据蓄电池完全放电时的比重及10%放电时的比重,即可推算出蓄电池的放电量。
测定铅蓄电池之电解液比重为得知放电量的最佳方式。因此,定期性的测定使用后的比重,以避免过度放电,测比重的同时,亦侧电解液的温度,以20度C所换算出的比重,切勿使其降到80%放电量的数值以下。
放电量与寿命
每日反复充放电以供使用时,则电池寿命将会因放电量的深浅,而受到影响。
放电状态与内部阻抗
内部阻抗会因放电量增加而加大,尤其放电终点时,阻抗最大,主因为放电的进行使得极板内产生电流的不良导体—铅及电解液比重的下降,都导致内部阻抗增强,故放电后,务必马上充电,若任其持续放电状态,则铅形成安定的白色结晶后(此即文献上所说的硫化现象),即使充电,极板的活性物资亦无法恢复原状,而将缩短电瓶的使用年限。
放电中的温度
当电池过度放电,内部阻抗即显著增加,因此蓄电池温度也会上升。放电时的温度高,会提高充电完成时温度,因此,将放电终了时的温度控制在40℃以下为最理想。
SOTA蓄电池行业信息
电池的充电管理
(1) 基本的限流限压控制充电电流既不能太大,也不能太小。正常充电电流较小,电池负极析出的H2和正极析出的O2,几乎完全复合成H2O,如果充电电流过大,气体来不及全部复合,导致电池内部压力增大,引起排气阀门开启,造成电池失水,因此必须限制充电电流,一般不要超过0.25C(A)比较合适。由于电池在充电过程中,电池内阻会发生变化,所以以恒定的电流值充电会获得满意的结果。当充电电流减少,电压慢慢升高,电池容量慢慢增加,则电压便维持在一个恒定的值保持不变。此后便维持一个很小的电流对电池进行浮充。
(2)能进行均浮充转换首先进行限流限压充电,但是该“限压”是一个均衡的充电电压,比较高。均充一定时间后,再自动转为电压较低的浮充。在以下几种情况下,开始进行均充浮充的循环:UPS的交流输入停电后再来电;手动开机后;电池进行自测完成后;长期浮充后。
(3)分阶段充电方式长期浮充会导致电池极板活性老化,使电池内阻增大,使充进去的能量除了补充电池自放电的消耗外,大部分转化为内阻发热的功率。采用分阶段充电克服该问题:分阶段充电方式方案:排名靠前阶段是限流均衡充电阶段,均充到电池容量的大约90%(时间约5小时到48小时适宜);第二阶段是间隙阶段,这时停止充电一个短时间(数分钟到数小时),让排名靠前阶段析出的H2和析出的O2充分复合;第三阶段是浮充阶段,这阶段对电池进行浮充充电,将电池充到容量接近100%(一周左右);第四阶段是休眠阶段,这阶段不给电池充电,利用电池的自身的漏电流放电,一直到规定的电压下限(20――30天左右)。据试验该充电方式可以提高电池寿命40%左右。
(4)温度补偿环境温度变化时,必须对浮充电压进行校正,校正系数为18mV/℃(标称12V的电池)。为简单计,可以分级校正,如:电池静置时,温度太高,电池的自放电加剧。电池使用条件推荐为20℃--25℃,温度太低,电池放电容量降低,充电接受能力下降。温度太高,反映加剧,导致失水,极板腐蚀加剧。电池的充电电压通过温度补偿来改变,温度高时,充电电压降低,使电池处于优秀浮充状态。
但是,当环境温度升高时,电池本身固有的寿命仍然会缩短。实践表明,即使配备了温度补偿,对这种电池固有的老化现象也无回天之力。严格讲,保证电池服务优秀方案是将环境温度控制在20℃--25℃,控制放电次数、放电深度、放电和充电电流以及定时冲放电的周期。几乎没有谁能满足电池厂家要求的条件,因此达到电池厂家给出的期望寿命是很难的。
根据环境温度的高低来调节充电电压。对电池寿命有提高,但是好的温度补偿是改善电池的环境温度,使之达到20℃--25℃4.2 电池剩余容量的估算电池容量动态计算,是通过电池电流对时间的积分来计算的,它反映了电池充入的或放出的容量的多少,同时有时需要大致了解电池的“好坏程度”,因此需要进行容量的预计。用户可以启动容量预计来预测容量。
容量估算的基本方法是:获取一组完好的标准电池的0.05C10 A放电电压曲线后,对电池进行以0.05C10A电流放电,每隔一段时间比较一下放电端电压及放出的容量。例如某标准电池0.05C10A放电到12.5V用了200分钟,而所测电池0.05C10A放电到12.5V只用了150分钟,则该电池的静置容量为额定容量的150/200*100%=75%.
很多情况需要不是等真正停电后知道电池能支持多长时间,因为如果到这时才发现电池容量不够为时已晚。所以希望能对电池的容量能进行一个预估。在UPS开机时或运行一定时间时或能进行在线手动的对电池的测试。该测试特别是带了重要负载后的在线测试是承担一定的风险的。建议电池只支持很短的一个时间,好是负载需要的能量由市电和电池分担,这样可以防止因电池容量不足造成猝不及防的UPS输出中断问题。
但是很多UPS的容量估算是根据电池的电压直接估算的百分比。不管怎样,容量估算仅仅是“估算”,一般做到10%的精度已经相当不错的了。
4.3 电池的放电管理
(1) 不同负载有不同的终止电压电池容量得不到及时补充,长久使得负极板晶核,极板硫酸化,电池难以还原。因此必须防止电池过放电。一般要有欠压告警、低压关机功能。根据电池容量及负载大小来设置放电终止电压,既保证能达到放出足够的容量,充分利用电池的容量,又不对电池造成损害。对于长延时机器或小负载时,由于放电电流相对电池容量小,因此电池保护点应该设置较高
(2)二次下电功能UPS在电池一定的前提下,负载小则放电时间长,负载大则放电时间短。而有时UPS的负载有的更重要,需要支持更长的时间,如当UPS带移动基站时,传输设备比基站设备更重要,因为前者不仅影响该基站,而且会影响上级下级基站的信号传输,因此在市电停电后希望能支持更长的时间。所以当停电电池支持一定时间后排名靠前次切除相对不重要的负载的供电,当电池电压达到终止电压时再关机断掉重要负载的供电。
|