当前位置:首页 >> 产品展示 >> 电工电气 >> 电源 >>耐普蓄电池销售商
耐普蓄电池销售商放大图片

产品价格:1   元(人民币)
上架日期:2017年6月9日
产地:1
发货地:北京  (发货期:当天内发货)
供应数量:不限
最少起订:1只
浏览量:20
  暂无相关下载
其他资料下载:

         
UPS电源蓄电池厂家直销

点击这里给我发消息
  详细说明  
品牌:耐普产地:1
价格:1人民币/只规格:1

简要说明:耐普牌的耐普蓄电池销售商产品:估价:1,规格:1,产品系列编号:1

详细介绍:

  

耐普蓄电池销售商

耐普蓄电池性能的影响因素:    
电池在均充状态时,充电电压会达到折合单格2.4V,这个电压超过了电池正极板大量析氧的电压,特别是在高温环境中,大量析氧电压会下降,这样产生的析氧量会大幅度的增加。而正极板产生的氧气在负极板会被吸收,吸收氧气是明显的放热反应,电池的温度会提升。假如电池已经出现失水,玻璃纤维隔板的无酸孔隙增加,会加速负极板吸收氧气,产生的热量会更多,电池温升也更高。而电池的温升也会加速正极板析氧,形成恶性循环——热失控。在热失控状态下,析氧量增加,电池内的气压增加,当达到塑料电池外壳的玻璃点温度的时候,电池开始鼓胀变型,这种变型除了影响电池内部的机械结构以外,还会形成电池漏气,而导致更加严重的失水漏酸。
尽管电池热失控现象发生的未几,但是一旦发生热失控,电池的寿命会迅速提前结束。

耐普蓄电池使用时的注意事项:
(1)采用多元优质板栅合金,提高气体释放的过电位。即普通蓄电池板栅合金在2.30V 单体(25℃)以上时释放气体。采用优质多元合金后,在2.35V/单体(25℃)以上时释放气体,从而相对减少了气体释放量。
(2)让负极有多余的容量,即比正极多出10%的容量。充电后期正极释放的氧气与负极接触,发生反应,重新生成水,即O2+2Pb→2PbO,PbO+H2SO4→H2O+PbSO4使负极由于氧气的作用处于欠充电状态,因而不产生氢气。这种正极的氧气被负极铅吸收,再进一步化合成水的过程,即所谓阴极吸收。
(3)为了让正极释放的氧气尽快流通到负极,必须采用和普通铅酸蓄电池所采用的微孔橡胶隔板不同的新超细玻璃纤维隔板。其孔率由橡胶隔板的50%提高到90%以上,从而使氧气易于流通到负极,再化合成水。另外,超细玻璃纤维板具有吸附硫酸电解液的功能,因此阀控式密封铅酸蓄电池采用贫液式设计,即使电池倾倒,也无电解液溢出。
(4)采用密封式阀控滤酸结构,使酸雾不能逸出,达到安全、保护环境的目的。
在上述阴极吸收过程中,由于产生的水在密封情况下不能溢出,因此阀控式密封铅酸蓄电池可免除补加水维护,这也是阀控式密封铅酸蓄电池称为免维电池的由来。



耐普蓄电池性能特点:
耐普蓄电池是由正负极板、隔板、壳体、电解液和接线桩头等组成,其放电的化学反应是依靠正极板活性物质(二氧化铅和铅)和负极板活性物质 (海绵状纯铅)在电解液(稀硫酸溶液)的作用下进行,其中极板的栅架,传统蓄电池用铅锑合金制造,免维护蓄电池是用铅钙合金制造,前者用锑,后者用钙,这是两者的根本区别点。不同的材料就会产生不同的现象:传统蓄电池在使用过程中会发生减液现象,这是因为栅架上的锑会污染负极板上的海绵状纯铅,减弱了完全充电后蓄电池内的反电动势,造成水的过度分解,大量氧气和氢气分别从正负极板上逸出,使电解液减少。用钙代替锑,就可以改变完全充电后的蓄电池的反电动势,减少过充电流,液体气化速度减低,从而减低了电解液的损失。由于免维护蓄电池采用铅钙合金栅架,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点。
耐普蓄电池正确的使用方法:        
免维护蓄电池也可以进行补充充电,充电方式与普通蓄电池的充电方法基本一样。充电时每单格电压应限制在2.3-2.4V间。注意使用常规充电方法充电会消耗较多的水,充电时充电电流应稍小些(5A以下)。不能进行快速充电,否则,可能会发生爆炸,导致伤人。当免维护蓄电池的比重计,显示为淡黄色或红色时,说明该蓄电池已接近报废,即使再充电,使用寿命也不长。此时的充电只能做为救急的权宜之计。有条件时,对免维护蓄电池可用具有电流-电压特性的充电设备进行充电。该设备即可保证充足电,又可避免过充电而消耗较多的水

耐普蓄电池的密封原理:
1) 挑选高孔隙率AGM隔板,孔隙率在93%以上,为氧的复合供给通道
2) 采取定量灌酸,使玻璃棉隔板在吸收电解液今后,仍有5—10%的孔隙率未被电解液充溢,因而VRLA电池又称为贫液式电池。
3) 过量的负极活性物资,正、负极板的容量比通常为1:1.1~1:1.2,这么在正极足够电今后,负极仍未足够电,以避免氢在负极分出,若氢气很多分出是无法复合的。
4) 电池集群的紧装置,采取集群预紧缩技能,将装置压在40—60Kpa之间,以确保AGM隔板与正负极板外表能够杰出触摸,由于VRLA电池的电解液主要靠AGM隔板供给。
5) 高纯度Pb—Ca—Sn—Al无锑板栅合金,由于Pb—Ca合金比Pb—Sb合金有更高的析氢过电位,然后能够下降因板栅腐蚀而分出氢气的可能性。
6) 开闭阀压力稳定牢靠的安全阀,通信用VRLA电池的规范请求开阀压10—35Kpa,闭阀压3—15Kpa,开闭阀压力较挨近,可削减气体排放和水的丢失。
7) 选用恒压限流的充电方式,VRLA电池对过充电较为灵敏,过充电会加快电流的损坏,恒压限流充电可避免过充电和热失控。
耐普蓄电池销售商
耐普蓄电池的使用环境:
1)电池在环境温度-20℃~50℃内都能工作,但电池额定容量和寿命都是相对于25℃而言。环境温度低于25℃时,电池实际容量降低;环境温度高于25℃时,电池实际容量增加,寿命缩短。
2)以25℃为基准,在每升高10℃的环境下工作,电池寿命缩短50%。
特别注意:电池的理想使用温度为20℃~30℃。为保持电池使用寿命,电池室应安装空调。
3)室内设计应宽敞,通风性好,UPS与电池柜间的距离不低于2米。避免将电池室设计为狭小,封闭的小房间
4)在不具备安装空调的使用环境下,配置带“温度补偿功能”的充电器也是延长电池使用寿命的方法之一,温度补偿系数为±0.003V/单体。环境温度超过30℃时,每升高1℃,降低浮充电压0.003V/单体;环境温度低于20℃时,每降低1℃,升高浮充电压0.003V/单体。
5)在极端条件下,当环境温度达到40℃时电池切不可充电,否则会使电池热失控。对热失控解释为:电池的浮充过程是个放热过程,放出的热量要靠通风或电池室内的降温措施排出,如果放热率超出排热能力,电池温度将会持续上升,轻者电池因失水干涸而寿命终止;重者电池壳起鼓、软化并放出硫化氢气体,电池寿命终止。持续的浮充电压过高或浮充电流过大同样会使电池热失控。
6)电池充足电后,电解液冰点为-70℃,而放电后电解液冰点仅为-5℃,所以在低温下使用或贮存时,一定要慎重,若电池内结冰,电池将失效而报废。


耐普蓄电池修复方法:
约60%的阀控式密封铅酸蓄电池,由于栅腐蚀失效。 诚如我们标题的文章: 铅酸 电池知识 ,电池充电,浮充电,包括与此相关联的电解水 水分解成*气和氧气在正极板产生。 在阀控密封阀门 电池不启用气体排出空气进入,而且大多数是由一个扩散过程重组,形成 恢复供水。 尽管如此,由于腐蚀板栅氧化阳性的是不可避免的。该腐蚀材料的数量逐步减少, 终导致总活性失效。腐蚀过程取决于重量比板的表面面积。 薄,具有较大的板块 网格面积的重量,比细丝厚板包含几个。 因此,薄格有 更快的速度每腐蚀的能力啊。 因此,UPS的电池,注册时间短背在背上, 需要大面积提供高电流,低3至5年的寿命。鉴于,UPS系统 更长的备份时间,如使用的通信也,少用阀控式密封铅酸蓄电池用板 但厚的网格;,具有更高的寿命,可达15年。电池干燥,电解质一个术语,用来描述电池故障造成的损失是第二个主要 电池故障故障原因,其中包括超过30%的电池。存在活跃 所需材料的数量是强制性的,以维持电池容量。因此损失电解质影响显着电池的持续供电能力


耐普蓄电池使用时的注意事项:  
建议用户在能够用一组蓄电池就可以满意设备的需求状况下,可能不要用两组电池并联运用,不然既会缩短电池的运用寿命,添加运用本钱,又会下降电池的归纳功能,不该该做这种劳民伤财的工作。若是因为设备的功率大,用两组电池并联仍不能满意设备功率需求的状况下,而选用2组以上,如3组、4组,乃至更多组的中达电通电池并联运用,那就更无必要了,两组电池并联运用现已带来了许多的晦气,更多组电池的并联运用就更杂乱,更晦气了。这就是说,在相同巨细的充电电压状况下,两组并联运用的电池组,其每一组所得到的充电电流是不一样的,内阻大的其充电电流小,内阻小的其充电电流大。这样,就有能够形成充电电流小的那组电池常常处于充电缺乏的状况,一朝一夕,这组中达电通蓄电池能够因长时间亏电而危险盐化愈加加大其内阻,其内阻越大,充电电流更小,因为形成了这样一个恶性循环而招致这组电池的运用寿命大大缩短。而只用一组电池就不存在这种状况。就此一点,就足以阐明中达电通蓄电池组单组运用的作用远远好于并联运用了。



该公司其他信息
最新供求信息 企业产品推荐

暂无产品
  在线询盘/留言 请仔细填写准确及时的联系到你!  
您的姓名:
* 预计需求数量: *
联系手机:
*  移动电话或传真:
电子邮件:
* 所在单位:
咨询内容:
*
           您要求厂家给您提供:
  • 规格,型号
  • 价格及付款条件
  • 产品目录
  • 最低订货量
  • 运送资料
  • 提供样本
  • 库存情况
  • 包装材料