商铺名称:上海励辉自动化科技有限公司
联系人:周工(先生)
联系手机:
固定电话:
企业邮箱:2872866552@qq.com
联系地址:
邮编:
联系我时,请说是在地方电气网上看到的,谢谢!
西门子SITOP PSU1600不间断电源6EP4134-3AB00-2AY0代理商
本公司经营范围:
SIEMENS 可编程控制器
PLC及 模块:S7-200、 S7-300、 S7-400、S7-1200,S7-1500,ET-200系列
变 频 器:V20,V90,G120,S120系列
触 摸 屏
数 控:6SN、1FT、6FC、6FX,1FK等系列
逻辑控制模块: LOGO!
SITOP直流电源: 24V DC 1.3A、2.5A、3A、5A、10A、20A、40A可并联.
数控伺服停产备件:(6FC,6SN全系列)
SIEMENS 数控 伺服
系统及伺报电机,伺服驱动等备件销售
SIEMENS S7系列
S7-400,S7-1200,S7-300,S7-200SMART(优势产品,库存量大)
SIEMENS 其他产品
PLC周边产品(编程电缆,前连接器,导轨)
PLC编程软件
规 格:德国Siemens原产出品;凡所购公司产品,均按原厂质保一年。
西门子SITOP PSU1600不间断电源6EP4134-3AB00-2AY0代理商
防腐剂的使用
因一些公司的生产特性,各电气mcc室的腐蚀气体浓度过大,致使很多电气设备因腐蚀损坏(包括变频器)。
为了解决以上问题可安装一套空调系统,用正压新鲜风来改善环境条件。为减少腐蚀性气体对电路板上元器件的腐蚀,还可要求变频器生产厂家对线路板进行防腐加工,维修后也要喷涂防腐剂,有效地降低了变频器的故障率,提高了使用效率。
给变频器除尘:变频器根据使用环境的不同,应定期检查散热通道、及电路板中有无积累灰尘,一般每半年清理一次,至少也要一年清理一次,以确保变频器散热良好,使其避免因散热不良而引发故障。
在保养的同时要仔细检查变频器,定期送电,带电机工作在2hz 的低频约10分钟,以确保变频器工作正常。
处理
由于西门子变频器在中国市场的一个庞大的销售量,在使用中必然会碰到许多问题,以下就西门子变频器的一些常见故障在这里说明:
西门子变频器应该是进入中国市场较早的一个品牌,所以有些老的产品象MICRO MASTER ,MIDI MASTER仍有大量的用户在使用。对于MICRO MASTER系列变频器见的故障就是通电无显示,该系列变频器的开关电源采用了一块UC2842芯片作为波形发生器,该芯片的损坏会导致开关电源无法工作,从而也无法正常显示,此外该芯片的工作电源不正常也会使得开关电源无法正常工作。对于MIDI MASTER系列变频器较常见的故障主要有驱动电路的损坏,以及IGBT模块的损坏,MIDI MASTER的驱动电路是由一对对管去驱动IGBT模块的,而这对管也是最容易损坏的元器件,损坏原因常由于IGBT模块的损坏,而导致高压大电流窜入驱动回路,导致驱动电路的元器件损坏。
对于6SE70系列变频器,由于质量较好,故障率明显降低,经常会碰到的故障现象有(直流电压低),由于是直接通过电阻降压来取得采样信号,所以故障F008的出现主要是由于采样电阻的损坏而导致的。此外,还会碰到F025、F026、F027关于输入相缺失的报警,故障原因一是由于6SE70系列本身带有输入相检测功能,输入检测电路的损坏会导致输入缺相报警,如排除此故障原因,报警信号还不能消除,那故障很有可能就是CU板的损坏了。此外F011(过电流)故障也是一个常见的故障,电流传感器的损坏是引起此故障的原因之一,此外,在维修中经常会碰到驱动电路和开关电源上的一些贴片的滤波电容的损坏也会引起F011报警,要特别注意由于这种原因而引起的故障报警。
对于ECO的变频器,碰到最多的就是电源板的烧坏以及功率模块的损坏,引起的原因也主要是由于强电侧(功率模块)与弱电侧(驱动电路)没有隔离电路,导致强电进入了控制电路,引起驱动电路及开关电源大面积烧坏,此外预充电回路损坏也是常见故障(30KW以上),由于限流回路设计在交流输入侧,只要有三相交流电源任意一路送电时有时序上的超前和滞后,都有可能引起自身一路或其余两路充电时电流过大,而使得限流电阻和切入继电器烧毁。F231故障也是ECO变频器的一种常见故障,引起原因就是因为采样电阻的损坏。
西门子变频器故障分析及处理方法:
一般来说,当遇到西门子变频器故障时,再上电之前首先要用万用表检查一下整流桥和IGBT模块有没有烧,线路板上有没有明显烧损的痕迹。
具体方法是:用万用表(是用模拟表)的电阻1K档,黑表棒接变频器的直流端(-)极,用红表棒分别测量变频器的三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。然后,反过来将红表棒接变频器的直流端(+)极,黑表棒分别测量变频器三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。否则,说明模块损坏。这时候不能盲目上电,特别是整流桥损坏或线路板上有明显的烧损痕迹的情况下尤其禁止上电,以免造成更大的损失。
如果以上测量西门子变频器故障结果表明模块基本没问题,可以上电观察。
上电后面板显示[F231]或[F002](MM3变频器),这种故障一般有两种可能。常见的是由于电源驱动板有问题,也有少部分是因为主控板造成的,可以先换一块主控板试一试,否则问题肯定在电源驱动板部分了。
上电后面板无显示(MM4变频器),面板下的指示灯[绿灯不亮,黄灯快闪],这种现象说明整流和开关电源工作基本正常,问题出在开关电源的某一路不正常(整流二极管击穿或开路,可以用万用表测量开关电源的几路整流二极管,很容易发现问题。换一个相应的整流二极管问题就解决了。这种问题一般是二极管的耐压偏低,电源脉动冲击造成的。
有时显示[F0022,F0001,A0501]不定(MM4),敲击机壳或动一动面板和主板时而能正常,一般属于接插件的问题,检查一下各部位接插件。也发现有个别机器是因为线路板上的阻容元件质量问题或焊接不良所致。
上电后显示[-----](MM4),一般是主控板问题。多数情况下换一块主控板问题就解决了,一般是因为外围控制线路有强电干扰造成主控板某些元件(如帖片电容、电阻等)损坏所至,或与主控板散热不好也有一定的关系。但也有个别问题出在电源板上。
上电后显示正常,一运行即显示过流。[F0001](MM4)[F002](MM3)即使空载也一样,一般这种现象说明IGBT模块损坏或驱动板有问题,需更换IGBT模块并仔细检查驱动部分后才能再次上电,不然可能因为驱动板的问题造成IGBT模块再次损坏!这种问题的出现,一般是因为变频器多次过载或电源电压波动较大(特别是偏低)使得变频器脉动电流过大主控板CPU来不及反映并采取保护措施所造成的。
总结以上,大的原器件如IGBT功率模块出问题的比例倒是不多,因为一些低端的简单原器件问题和装配问题引发的故障比例较多,如果有图纸和零件,这些问题便不难解决而且费用不高,否则解决这些问题还是不容易的。的办法就是换整块的线路板!
选择使用
西门子公司不同类型的变频器,用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。在选择变频器时因注意以下几点注意事顼:
根据负载特性选择变频器,如负载为恒转矩负载需选择西门子mmv/mdv、mm420/mm440变频器,如负载为风机、泵类负载应选择西门子430变频器。
选择变频器时应以实际电动机电流值作为变频器选择的依据,电动机的额定功率只能作为参考。另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变差。因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。
变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。所以变频器应放大一、两挡选择或在变频器的输出端安装输出电抗器。
当变频器用于控制并联的几台电动机时,一定要考虑变频器到电动机的电缆的长度总和在变频器的容许范围内。如果超过规定值,要放大两挡来选择变频器,另外在此种情况下,变频器的控制方式只能为v/f控制方式,并且变频器无法实现电动机的过流、过载保护,此时,需在每台电动机侧加熔断器来实现保护。
对于一些特殊的应用场合,如高环境温度、高开关频率、高海拔等,此时会引起变频器的降容,变频器需放大一挡选择。
使用变频器控制高速电动机时,由于高速电动机的电抗小,会产生较多的高次谐波。而这些高次谐波会使变频器的输出电流值增加。因此,选择用于高速电动机的变频器时,应比普通电动机的变频器稍大一些。
变频器用于变极电动机时,应充分注意选择变频器的容量,使其额定电流在变频器的额定输出电流以下。另外,在运行中进行极数转换时,应先停止电动机工作,否则,会造成电动机空转,恶劣时会造成变频器损坏。
驱动防爆电动机时,变频器没有防爆构造,应将变频器设置在危险场所之外。
使用变频器驱动齿轮减速电动机时,使用范围受到齿轮转动部分润滑方式的制约。润滑油润滑时,在低速范围内没有限制;在超过额定转速以上的高速范围内,有可能发生润滑油用光的危险。因此,不要超过转速容许值。
变频器驱动绕线转子异步电动机时,大多是利用已有的电动机。绕线电动机与普通的鼠笼电动机相比,绕线电动机绕组的阻抗小。因此,容易发生由于纹波电流而引起的过电流跳闸现象,所以应选择比通常容量稍大的变频器。一般绕线电动机多用于飞轮力矩gd2较大的场合,在设定加减速时间时应多注意。
常见问题
什么是西门子变频器?
西门子变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
为什么西门子变频器的电压与电流成比例的改变?
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁 电机。因此,频率与电压要成比例地改变,即改变频率的同时控制西门子变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于 风机、泵类节能型西门子变频器。
西门子变频器制动的有关问题
制动的概念:指电能从电机侧流到西门子变频器侧(或供电电源侧),这时电机的转速高于同步转速,负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积。当动能减为零时,该事物就处在停止状态。机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。对于西门子变频器,如果输出频率降低,电机转速将跟随频率同样降低。这时会产生制动过程. 由制动产生的功率将返回到西门子变频器侧。这些功率可以用电阻发热消耗。在用于提升类负载,在下降时, 能量(势能)也要返回到西门子变频器(或电源)侧,进行制动.这种操作方法被称作“再生制动”,而该方法可应用于西门子变频器制动。在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到西门子变频器电源侧的方法叫做“功率返回再生方法”。在实际中,这种应用需要“能量回馈单元”选件。
采用西门子变频器运转时,电机的起动电流、起动转矩怎样?
种不同,为125%~200%)。用工频电源直接起动 时,起动电流为6~7倍,因此,将产生机械电气上的冲击。采用西门子变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转 矩为70%~120%额定转矩;对于带有转矩自动增强功能的西门子变频器,起动转矩为以上,可以带全负载起动。
装设西门子变频器时安装方向是否有限制。
西门子变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。
不采用软起动,将电机直接投入到某固定频率的西门子变频器时是否可以?
在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(6~7倍额定电流),由于西门子变频器切断过电流,电机不能起动。
西门子变频器可以传动齿轮电机吗?
根据减速机的结构和润滑方式不同,需要注意若干问题。在齿轮的结构上通常可考虑70~80Hz为极限,采用油润滑时,在低速下连续运转关系到齿轮的损坏等。
西门子变频器能用来驱动单相电机吗?可以使用单相电源吗?
单相电机基本上不能用。对于调速器开关起动式的单相电机,在工作点以下的调速范围时将烧毁辅助绕组;对于电容起动或电容运转方式的,将诱发电容器爆炸。西门子变频器的电源通常为3相,但对于小容量的,也有用单相电源运转的机种。
西门子变频器本身消耗的功率有多少?
它与西门子变频器的机种、运行状态、使用频率等有关,但要回答很困难。不过在60Hz以下的西门子变频器效率大约为94%~96%,据此可推算损耗,但内藏再生制动式(FR-K)西门子变频器,如果把制动时的损耗也考虑进去,功率消耗将变大,对于操作盘设计等必须注意。
为什么不能在6~60Hz全区域连续运转使用?
一般电机利用装在轴上的外扇或转子端环上的叶片进行冷却,若速度降低则冷却效果下降,因而不能承受与高速运转相同的发热,必须降低在低速下的负载转矩,或采用容量大的西门子变频器与电机组合,或采用专用电机。
西门子变频器的寿命有多久?
西门子变频器虽为静止装置,但也有像滤波电容器、冷却风扇那样的消耗器件,如果对它们进行定期的维护,可望有10年以上的寿命。
西门子变频器内藏有冷却风扇,风的方向如何?风扇若是坏了会怎样?
对于小容量也有无冷却风扇的机种。有风扇的机种,风的方向是从下向上,所以装设西门子变频器的地方,上、下部不要放置妨碍吸、排气的机械器材。还有,西门子变频器上方不要放置怕热的零件等。风扇发生故障时,由电扇停止检测或冷却风扇上的过热检测进行保护
关于散热的问题
如果要正确的使用西门子变频器,必须认真地考虑散热的问题。西门子变频器的故障率随温度升高而成指数的上升。使用寿命随温度升高而成指数的下降。环境温度升高10度,西门子变频器使用寿命减半。在西门子变频器工作时,流过西门子变频器的电流是很大的,西门子变频器产生的热量也是非常大的,不能忽视其发热所产生的影响。
保养
变频器在长时间的存放过程中,储存环境可能对变频器本身产生许多不利的影响,对于潮湿、温度、微尘及腐蚀性气体等都有一定的要求,在确保其环境符合要求的前提下,还有必要对变频器进行定期的维护保养。
西门子变频器,保养维护,电容充电 1.外观检查 对长期存放的变频器,检查时要
注意变频器的外观是否有变化,如:外观有无变形,有无磕碰痕迹;有无液体渗出和物件脱落;有无动物、昆虫、浮游物等人驻,以及其他异常的变化。。
检查风机的灵
用细的木棍或其他较软的物体拨动风叶,手感应该流畅,风机转动应灵活,不能有卡涩的现象,观察风机是否有液体渗出或润滑油的痕迹。
电气性能检查
长期存放的变频器,由于环境的影响和变频器器件的使用期限,必须定期对变频器进行电气性能的检查及保养。具体方法如下:
使用万用表检测整流部分的整流桥特性,使用万用表的欧姆挡X100,红表笔接变频器的“P”端,用黑表笔分别接输人“R”“S”“T”,表针摆动应在2/3处,超过2/3或低于l/2均视异常,将黑红表笔交换重新测量,表针不能摆动,如出现摆动则为异常。使用万用表的欧姆挡X100,红表笔接变频器的“N”端,用黑表笔分别接输入“R”“S”“T”,表针摆动应在2/3处,超过2/3或低于1/2均视异常,将黑红表笔交换重新测量,表针不能摆动,否则为异常。
用同样的方法检查逆变部分,将“R”“S”“T”换为“U”“V”“W”,因为逆变的IGBT的源极和漏极之间在关闭状态下同样有整流桥特性。
绝缘测试。对于输人输出端和地(外壳)进行高压绝缘检测,使用500v摇表的黑表端接变频器的接地标识。红端分别接“R”“S”“T”“U”“V”“W”,均速摇动摇表,测量绝缘电阻应在SM以上。
电容器的检测。主回路主要由三相或单相整流桥、平滑电容、滤波电容、IPM逆变桥、限流电阻、接触器等元器件组成。其中对变频器寿命最有影响的是平滑铝电解电容器,它的寿命主要由加在其两端的直流电压和内部温度所决定。在主回路设计时已经根据电源电压选定了电容器的型号,所以内部的温度对电解电容器[优论论文]的寿命起决定作用。
电解电容器相对温度的劣化特性直接影响到变频器的寿命。
一般每上升10℃变频器的寿命减半,这是因为电解电容器内部的化学反应随着温度的升高导致劣化速度加快。劣化速度与材料温度的关系遵循阿列里乌斯理论(电解液理论)。电解电容器的内部温度实际上是电容器周围环境温度与脉动电流造成的温度之和。因此,我们应该在安装时考虑适合的环境温度,在电容器劣化过程中,会出现静电容量减小,漏电流增大,等价电阻值增大,tgδ值增大等现象。维护保养时通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于初期值的80%,绝缘阻抗在5MΩ以下时应考虑更换电解电容器。对于储存不超过5年的电容器我们应该定期充电以进行维护,每隔半年到一年充电一次,方法具体如下:
首先准备功率不小于5KW的三相调压器将调压器的输人端接人有短路过流保护的三相电源,三相电源每相必须有10A的交流电流表作为指示。将输出端通过快熔接入变频器的“R”“S”“T”。将变频器调至10伏以下,送电,观察电流表是否异常,如无异常,将电压缓缓调到30伏,观察5分钟,如无异常,每十分钟将电压升高20伏,加压过程中,随时观察电流的变化,当电压超过200伏时,振风机等开始工作。这时可将电压缓缓升到350伏,观察有无电流波动,维持1小时后,将电压升到额定电压,再维持2小时,继续观察电流。无异常即可。上电过程中,如果遇见变频器的面板显示有故障代码,先查明原因,是否与低压有关,否则应引起重视。电源断开后应等到充电灯完全熄灭方可拆除电源线,待机器完全冷却后装机。